Extensions 1→N→G→Q→1 with N=C33 and Q=C6

Direct product G=N×Q with N=C33 and Q=C6
dρLabelID
C33×C6162C3^3xC6162,55

Semidirect products G=N:Q with N=C33 and Q=C6
extensionφ:Q→Aut NdρLabelID
C331C6 = C33⋊C6φ: C6/C1C6 ⊆ Aut C3396+C3^3:1C6162,11
C332C6 = C3×C32⋊C6φ: C6/C1C6 ⊆ Aut C33186C3^3:2C6162,34
C333C6 = S3×He3φ: C6/C1C6 ⊆ Aut C33186C3^3:3C6162,35
C334C6 = He34S3φ: C6/C1C6 ⊆ Aut C3327C3^3:4C6162,40
C335C6 = C2×C3≀C3φ: C6/C2C3 ⊆ Aut C33183C3^3:5C6162,28
C336C6 = C6×He3φ: C6/C2C3 ⊆ Aut C3354C3^3:6C6162,48
C337C6 = S3×C33φ: C6/C3C2 ⊆ Aut C3354C3^3:7C6162,51
C338C6 = C32×C3⋊S3φ: C6/C3C2 ⊆ Aut C3318C3^3:8C6162,52
C339C6 = C3×C33⋊C2φ: C6/C3C2 ⊆ Aut C3354C3^3:9C6162,53

Non-split extensions G=N.Q with N=C33 and Q=C6
extensionφ:Q→Aut NdρLabelID
C33.1C6 = C32⋊C18φ: C6/C1C6 ⊆ Aut C33186C3^3.1C6162,4
C33.2C6 = S3×3- 1+2φ: C6/C1C6 ⊆ Aut C33186C3^3.2C6162,37
C33.3C6 = C2×C32⋊C9φ: C6/C2C3 ⊆ Aut C3354C3^3.3C6162,24
C33.4C6 = C6×3- 1+2φ: C6/C2C3 ⊆ Aut C3354C3^3.4C6162,49
C33.5C6 = S3×C3×C9φ: C6/C3C2 ⊆ Aut C3354C3^3.5C6162,33
C33.6C6 = C9×C3⋊S3φ: C6/C3C2 ⊆ Aut C3354C3^3.6C6162,39

׿
×
𝔽